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A model of the quasi-stationary isothermal phase transitions of thermoelastic solids is considered. Some problems connected 
with the specification of the kinematic characteristic of the phase transition are discussed. Relations on the surface of a strong 
discontinuity separating the phases of the material are formulated. Unlike the classical case of the equilibrium of liquid (gas) 
phases, the proposed relations take into account the irreversible nature of the transition in solids, the tensor character of the 
chemical potential and the important dependence on the type of anisotropy of the material of the phases. The Clausius-Clapeyron 
equations are formulated for a thermoelastic medium with arbitrary symmetry; these determine expressions for the derivatives 
of the phase-transition temperature with respect to the initial strain and orientation of the surface. These equations enable the 
the investigation of the neighbourhood of the jump in the space of initial parameters to be investigated. For the case of an initially 
isotropic material it is shown that the normal to the interface, which coincides with one of the principal axes of the tensor of 
finite deformation of the initial phase, yields an extremum of the phase transition temperature for a fixed strain of the initial 
phase. The phase transition of the first kind in a linear initially isotropic thermoelastic material is investigated in detail. It is 
shown that the smallness of the deformations of each of the phases implies smallness of the jump, which experiences rotation 
of the material particle on the phase boundary. A class of materials for which, when there is a change in the deformation of the 
initial phase, the type of the phase transition inevitably changes, i.e. a transition occurs from a normal phase transition to an 
anomalous transition, is discussed. © 2004 Elsevier Ltd. All rights reserved. 

Experiment shows that practically all materials experience phase transitions when subjected to intense 
thermal and mechanical loads. From the point of view of continuum mechanics, these transitions can 
be treated as a manifestation of the non-uniqueness of the response functions (functionals) of the 
material and can be modelled as a transition from one branch of the reaction to another. In this case 
one can use the constitutive equations of the "normal" material of each of the phases, in particular, 
convex thermodynamic potentials. An alternative approach to investigating phase transitions is based 
on the assumption that a single equation of state exists, which does not possess the properties of convexity 
in a certain range of the parameters of state. A classical example is the van-der-Waals equation [1]. 
Starting from [2], a non-convex equation of state is also widely used in models of phase transitions of 
solids. The main drawback of these equations is that it is impossible to obtain practical information on 
the behaviour of the material at points at which the Hadamard condition [3], which is necessary for 
the boundary-value problems to the well posed, breaks down. 

A phase transition can occur when the nucleus of a new phase is formed. If, for reasons of an energy 
nature, the growth of the nucleus of a new phase is limited to mesodimensions that are small compared 
with the dimensions of the body, a mixture of two phases is formed with a compositional structure of 
the material, consisting of a "matrix" of the initial phase, "reinforced" by inclusions of the new phase 
scattered throughout the volume of the solid. In addition to the problem of the effective properties of 
such a medium, traditional for the mechanics of composite materials, there is a problem of a 
phenomenological description of the actual concentration and spatial distribution of the inclusions 
depending on the prehistory of the stresses and the thermal state [4]. 

When there is an unlimited increase in the nuclei, macroscopic regions are formed each of which 
occupies one of the phases. The interface is the surface of discontinuity of certain thermodynamic 
potentials of the medium and their first derivatives. Following the generally accepted terminology, we 
will call this case a phase transition of the first kind and we will consider this case only. The main problems 
when investigating such transitions are to establish relations for the jumps in the quantities at the 
interface and to analyse the stability of the interface. 
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These discontinuities have been investigated in detail for the case of thermal and mechanical 
equilibrium of the phases of an ideal liquid (gas) [2, 5]. The difficulties in modelling phase transitions 
of solids is due to the fact that the state and response of such materials comprise a more complex set 
of variables, including strain and stress tensors. Moreover, the phases of a solid, in general, have a 
different type of anisotropy, which requires different undistorted configurations in order to formulate 
the constitutive equations of the phases. An important difference is also related to the nature of the 
dissipative processes in solids. For liquids in zones of high gradients, the main dissipative mechanisms 
are viscosity and heat conduction, which lead to Navier-Stokes type equations with an infinitesimal 
memory of the medium concerning past states. For solids, the main dissipative mechanisms in zones 
of high gradient are related to the effects of plasticity, which is characterized by a long or even non- 
fading memory of the material. This difference leads to the fact that, on the slowly moving surfaces 
which separate the phases of a liquid, the entropy production is small, while for solids the contribution 
of singular sources of entropy, concentrated at the interface, may be considerable. The phenomenon 
of hysteresis of phase transitions in solids [6], in particular, indicates this. 

During the last ten years, a number of problems have been solved in the phenomenological theory 
of phase transitions in solids, close to a state of thermal and mechanical equilibrium. These include, 
in the first place, the rejection of attempts to determine the scalar chemical potential for a solid and a 
transition to chemical potential tensors [7-14]. For certain boundary conditions, the stability of the 
motion of the discontinuities considered has been investigated [8, 14]. As in the theory of shock waves 
[15], the kinetics of the phase transition play an important role [16-18]. These determine, in particular, 
the structure and stability of a strong discontinuity. Consideration of the kinetics enables the phase 
transition of solids to be considered from the position of more general rheological relations, for which 
there is a continuous thermomechanical history of the element of the material, undergoing a transition, 
rather than a sudden one. 

Research shows that the tensor nature of the chemical potential and the irreversible nature of the 
phase transition in a thermoelastic body, which are not entirely taken into account in [19], have a 
considerable influence on the dependence of the phase-transition temperature on the deformation of 
the initial phase and orientation of the interface. 

1. THE KINEMATICS OF BODIES WITH PHASE T R A N S I T I O N S  

We will consider the kinematics of a thermoelastic solid, the finite deformations and arbitrary heating 
of which are accompanied by phase transitions. The phases are assumed, in general, to be anisotropic 
solid materials with different types of anistropy. We will use three configurations of the body: 
~0 n) (n = 1.2) are undistorted reference configurations of the body in the n-th phase state, Z(t) is the 
actual configuration, which is either completely occupied by one of the phase, or two phases can coexist 
in it, separated by an interface. To fix our ideas, suppose the configurations ~n) are natural (unstressed) 
at the same temperature 00 = const. In the n-th phase state the material possesses group symmetry 
g~) ~ o, where o is the natural orthogonal group [3]. In other words, the constitutive equations of the 
material of the n-th phase, written using deformations, measured from the initial configuration r~ n), 
will be invariant under orthogonal transformations, which occur in the group g(~). 

n • • • - - r t  • () ) We will put OK (00) = const - the density of the material in the configuration ~ , where, in general, 
( 1 )  ( 2 )  " " ( n )  v P~ ~ PK • Suppose dx, dX are radius vectors connecting two infinitesimally close particles in the 

configurations Z(t) and ~n), respectively, and connected by the non-degenerate transformations 

dx = F ( l ) . dx  (1) = F C2)-dx (z), detF (1)>0, detF ~2)>0 
(1.1) 

d X  (1) = F o.  d X  <2), detF o > 0,  F o = R o.  U o 

where F (~) is the gradient of the mappings r~ n) --> Z(t), and Fo is the gradient of the mapping ~2) __> 
~1), Ro is an orthogonal tensor and Uo is a symmetrical positive-definite tensor. From relations (1.1) 
we have 

F (2) = F (1)' Fo (1.2)  

the tensor F 0 is the kinematic characteristic of the phase transition in the solid [13], which must be 
specified when constructing a model of the phase transitions. In the classical theory of phase transitions 
[1, 5], the analogue of F0 is the ratio of the densities of the material (the specific volumes) of the phases 
for a specified pressure and a specified thermal state. 
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In the configurations r~ ") the phases of the material differ not only in the mass density and type of 
anisotropy, but also in the densities of the free energy and entropy. The difference in the free energy 
and the difference in the entropy of the phases in the configurations v~") are rheological characteristics 
of a phase transition of the first kind in solids [13]. These characteristics, like the tensor F0, depend on 
the temperature and stresses in the configurations ~"). 

The question arises - what a priori limitations are imposed on the non-degenerate tensor F0? Even 
in the simplest case, when both phases are initially isotropic materials, the assertion that the 
configurations N~ 1) and v~ 2) are related by a similitude transformation (U0 = cd, c~ > 0) is an assumption 
which does not follow directly from the property of the initial isotropy of each of the phases of the 
material. In the case of anisotropy of the material of the phases the situation is even more complicated. 

We will start from the hypothesis that the mapping r~ 2) -~ v~ 1) satisfies the condition 

(2). (1) 
detF0 = PK /P~ (1.3) 

and corresponds to a minimum of the free energy density of the second phase ~/(2)(F(2), 00) in the 
configuration ~1), i.e. when F (2) = F 0. The necessary condition for this hypothesis to be satisfied is 

O (~(2)(F(2) ' 00 ) _ [~ j ( F ( 2 ) ) _  = 0 (1.4) 

where [3 is a Lagrange multiplier, determined from constraints (1.3) on the deformation F0, and j(2) = 
detF (2). Taking into account the formulae (T is a symmetric Cauchy stress tensor) 

9(2) ~XI/(2)(F (2), 0) = j (2)T(2) .  F(2)-'r, ~j(2) = = j(2)F(2) Jr 

0 F  (z) ~F  (2) 

it follows from condition (1.4) that the stress tensor of the second phase in the configuration r~ 1) is 
spherical 

(2) t T(2)(F0, 0o) = ]3p~ 

Using the representation for the stress tensor of an elastic material with an arbitrary type of anisotropy 

• T 

T(Z)(Fo, 0o) = R o T+(Uo,  0 o) • R o 

which is necessary for the constitutive equation to be independent of the choice of the frame of reference 
[3], we obtain 

T+(Uo, 00) = [3p(2)I (1.5) 

Relation (1.5), together with the condition (1.3), gives a system of equations for determining U0. 
The spherical tensor (1.5) is a special case of the stressed states of undistorted configurations, 

generated by transformations of the natural (unstressed) configuration. Hence, provided that 
T+(U0, 00) is a one-to-one function of the tensor U0, the configuration @) will also be undistorted for 
the second phase. The symmetry group of the material of the second phase in this configuration 

^(2) ~T  (2)r, 
g~0 = K0g~ 0 ~0  

is an orthogonally conjugate group g(~), while the tensor U0 commutes with any element G ~ g(~) [3]. 
Examples of such tensors are U0 = aI + bn @ n for a transversely-isotropic material, and U0 = ak @ 
k + bm @ m + cn @ n for an orthotropic material. Here I is the unit tensor, k, m and n are mutually 
orthogonal vectors, defining the direction of the crystallographic axes, and the scalar parameter a, b, 
c > 0 .  

It should be noted that the natural configuration r~ 2) can be regarded as a configuration which is 
obtained from the actual configuration Z(t) by unloading each element of the body on the assumption 
that all points of the body are in the second phase state and that phase transitions do not occur during 
unloading. Since the tensor U0 defined by Eqs (1.3) and (1.5) is constant, the configuration v~ 2), like 
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v~ 1), will belong to a three-dimensional Euclidean space. We emphasise that the result obtained holds 
for a uniform kinematic characteristic of the phase transition. If the kinematic characteristic of U0 is 
non-uniform in space, and does not satisfy the compatibility equation [20, 21], ~2) will be non-Euclidean. 

Hence, the kinematics of the phase transitions of solids possesses a certain similarity with the kinematics 
of plastic flow. The kinematics of a material element, subjected to finite plastic deformation, is a 
representation which connects the reference, actual and unloaded configurations with one another. The 
gradient of the mapping of the reference configuration into the actual configuration can be represented 
in the form of a composition of gradients of the "elastic" and "plastic" representations [21-23]. For 
non-uniform plastic deformation the unloaded configuration, in general, is non-Euclidean. 

The main difference between the kinematics of phase transitions and the kinematics of plastic flow 
is the fact that plastic deformation depends on the applied loads and varies with time, whereas the 
kinematic characteristic of the phase transition is constant. In this plan, the kinematics of phase 
transitions is simpler compared with the kinematics of plastic deformations. 

This analogy becomes closer when the kinetics of the phase transitions of solids is taken into account, 
when the degree of transition is variable in space and time, while the kinematic characteristic is related 
to the limiting position of an intermediate configuration, corresponding to complete transition of an 
element into the second phase state. 

2. R E L A T I O N S  AT THE I N T E R F A C E  

On the assumption that the process is close to equilibrium, we will formulate relations on the surface 
of the strong discontinuity which separates the phases of the material. Two relations are obvious: 
continuity of the temperature 

[01 : 0 (2.1) 

and continuity of the radius vector x, defining the position of a material particle in the actual configuration 
Z(t) of the body at the instant of time t 

[xl : 0 (2.2) 

Condition (2.2) is sometimes considered as the definition of coherent phase transitions [8, 9]. Examples of such 
transitions are twinning processes [24, 25] and some transitions in quartz [26, 27]. Sometimes models of non-coherent 
phase transitions are considered [8], for which continuity is assumed 0nly for the normal component of the jump 
in the vector x. If we consider not only equilibrium, stationary phase boundaries but also those that move with 
respect to the particles, then, within the framework of the systematic quasi-static model these transitions cannot 
be realized since the jump in the tangential component of the velocity in such transitions will be large and, as a 
consequence, the inertial forces will be substantial. 

To derive the remaining relations on a strong discontinuity we can use the integral relation [10, 13], 
written in material variables X -= X (1) • r~ 1) 

~tlp<gl<dV < = ~n<. lit<dSlc + I p < f  dV < + I P<c<~dS o (2.3) 
3K r S O 

Equation (2.3) includes the equation of equilibrium, the law of conservation of energy, the divergent 
equation of compatibility of the deformations and velocities [21, 28] and the entropy balance equation. 
We will take into account the presence in the body of a strong discontinuity surface So(t), moving with 
velocity % on which a certain contribution to the balance relation can occur 

u , T ~ - v - q K ,  b. + r ,  
q)~= ~K = f =  ~ =  

I/ -q~/O riO 

0 

(2.4) 

where F is the gradient of the mapping r~ 1) ~ )~(t), J = detF > 0, T K = JT • F - l r  is an asymmetric 
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Piola-Kirchhoff strain tensor, u and rl are the internal energy and entropy densities, q~ = J F  - 1  • q is 
the Lagrange vector of the heat flux, and ~ is the amplitude of singular sources of the 8-function type 
with a carrier on S0(t). 

The set of assumptions regarding the amplitudes of these sources for a system of conservation laws is an 
independent part of any model of a continuous medium, which allow of discontinuous solutions [15]. We will assume 
that there are no singular sources of mass, momentum and energy on the moving surfaces of strong discontinuities, 
which separate the two phases of the material, as in the classical theory of shock waves. The absence of sources 
of incompatibility of deformations follows from relation (2.2). As regards the singular source of entropy 8,, its 
absence on the interface in a solid is not obvious. Moreover, the phenomenon of hysteresis of phase transitions 
in elastic solids [6], which do not manifest considerable plastic (viscous) deformations in the volume of the body, 
indicates the presence of such sources more quickly. Hence, the case 8, = 0 will be called a reversible phase 
transition, for the irreversible phase transition 8, > 0. 

From system (2.3) we obtain relations for the jumps at the interface (c~ is the velocity of motion and 
n~ is the normal) 

p~c,~[(p~] + n~- [ ~ ]  + p~c~  = 0 

Taking expressions (2.4) into account, we will write these relations in expanded form 

[ T j  .n~ = 0 (2.5) 

p~cK[u] + [ v .  T~] • n , -  [q~]  • n~ = 0 (2.6) 

[F]  = h,~ ® n~,  h ~ - - [ v ] / c ~  (2.7)  

p~c~[0r l ]  - [q,~] - n K + p~cK8 , = 0 (2.8) 

Relation (2.5) is the condition for continuity of the stress vector at the interface. Relation (2.7) is a 
consequence of the continuity of the vector x(X, t) at the interface and, in addition, of the diad structure 
of the tensor [F] and indicates that there is no singular source of incompatibility of the deformations 
and velocities. Taking relation (2.1) into account, it follows from Eqs (2.6) and (2.8) [13] that, for a 
phase transition of a thermoelastic material, the jump in the free energy is equal to the sum of the 
dissipation density and the work of the stress vector on the strong discontinuity. 

[~I/] = P~lh~ • T ~ .  n~ + 8 ,  (2.9) 

Relation (2.9) is the analogue of the equation of the chemical potentials in the classical theory [1, 5] 
of the equilibrium of the phases of an ideal liquid, but differs considerably in the fact that it is the 
condition of continuity of the normal components of the Lagrange tensor of the chernicalpotential [7-10] 

n ~ . [ Z ~ ] - n ,  = 0, Z ~ - - - P , ( t g - 8 , ) l - 1 / 2 ( F  r . T  K+T r - F )  (2.10) 

In Euler variables x e )fit) the relations for the jumps in the quantities at an interface moving with 
velocity c with respect to the particles of the medium and possessing a normal n, have the form 

[pc] = o (2 .11)  

[ T ] . n  : 0 (2.12) 

p c [ u ] + [ v . T - q ] - n  = 0 (2.13) 

[F] = h ® J-1Fr.  n, h-- -p~[v] / (pc)  (2.14) 

pc[0r l ] -  [q] - n +  pcS,  = 0 (2.15) 

Relation (2.11) is the condition of continuity of the mass flow. Equation (2.12) is the condition of 
continuity of the stress vector, written using the Cauchy stress tensor T. Relation (2.14) is a consequence 
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of the equation of compatibility of the deformations [21, 28] in Euler variables. It follows from relations 
(2.13) and (2.15) that 

[V] = P~ l h '  T .  n + 8 ,  (2.16) 

o r  

n . [ z ] . n  = 0, Z - = ( ~ - 8 , ) j - 2 B - 2 - p ~ j ( B . T + T . B  ) (2.17) 

Here X is the Euler chemical potential tensor, connected with the Lagrange tensor (2.10) by the simple 
relation X = J-2F " X~" FT 

The dissipation 8, in expressions (2.9), (2.10), (2.16) and (2.17) enables the hysteresis of the phase transitions 
of elastic solids to be described in a natural way. To illustrate this consider a one-dimensional continuum (a cylindrical 
rod) in the isothermal approximation. The material of the rod can be in two phase states. The difference in the 
moduli of elasticity of the material of the phases is assumed to be small compared with the modulus of elasticity 
of the initial phase. The elastic potentials and the relation between the stresses and strains of the initial and generated 
phase are given by the expressions 

ul(e ) = 1/2 Ee 2 = 1/2 (52[E ' (5 = Ee 
(2.18) 

u2(e  ) = u 0 + 1/2 E ( e -  e0) 2 -- u 0 + 1/2 (52]E, (5 = E ( e -  eo), e > e 0 

Here (5 is the stress, e is the strain, E > 0 is Young's modulus, u 0 is the latent energy of the phase transition and 
e0 is a kinematic characteristic of the phase transition, equal to the strain, for which the stress in the material of 
the second phase vanishes. 

In the problem considered, condition (2.12) of the continuity of the stresses and the energy condition (2.16) 
serve as the conditions of equilibrium, which can be written in the form 

(51 = (52, U 2 - U l  = ( 5 1 ( e 2 - e l ) - ~ ,  

Taking formulae (2.18) into account, these relations give a system of two equations in ea and e2 

e 2 - e  I = e0, U0+~ , = %e 1, (5o==-Eeo 

Hence it follows that 

el = (u0+8,) /%,  ez = el+e0, (5(12) = (Uo+8, ) / eo  (2.19) 

where (5(12) is the stress for which a direct phase transition occurs. 
For the inverse place transition, when a phase transition wave propagates in the second phase, we have 

(51 = (52, u 2 - u l  = ( 5 1 ( e z - e l ) + ~ ,  

Hence, taking expressions (2.18) into account, we find that the stress (521), for which an inverse phase transition 
occurs, is given by the equation 

(5(21) = (U O -  ~ , ) / e o  (2.20) 

We seen from formulae (2.19) and (2.20) that the value of the singular source of dissipation is proportional to 
the difference in the stresses of the direct and inverse phase transitions 

(5(12)_(5(21) = 2 8 , / e 0 > 0  ' 

3. T H E  C L A U S I U S - C L A P E Y R O N  E Q U A T I O N S  

Consider the system of equations consisting of the condition of continuity (2.5) of the stress vector and 
the condition for a jump in the free energy (2.9). Taking into account representation (2.7) of the jump 
IF] and the condition (2.1) of the continuity of the temperature 0 at the interface, we can write this 
system in the form 

T(KZ)(F (z), 0)" n ~ -  F~(F, 0 ) .  n~ = 0 
(3.1) 

~/(2) (F(2) ,  0 )  - ~I/(F,  0 )  = p~clhn • Tn. n k + 8 ,  
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Here and henceforth 6, = const, and the index of the first phase is omitted for brevity. For specified 
values of F and nK, relations (3.1) can be regarded as a system of vector and scalar equations for 
determining the vector h, and the temperature 8. Hence it follows that 

8 = 8(F, nK) 

This fact determines an important difference between transitions in a solid from phase transitions in 
an ideal liquid, in which the melting (boiling) point depends only on the pressure and is given by the 
Clausius-Clapeyron equation [l, 51 

dOldp = e[V]lQ, (3.2) 

where Q,+, = e[r] is the heat of phase transition and [V] is the jump in the specific volume V = l/p. 
The analogue of Eq. (3.2), which, for a thermoelastic solid, determines the differential 

characteristics of the dependence of the phase transition temperature on the tensor F for a fixed normal 
n, to the interface of the phases, has the form 

WC = [T,l-h,.~.n, (3.3) 

To prove the correctness of relation (3.3) we differentiate the second of the equations of system (3.1) with respect 
to F with n, = const. Taking into account the fact that h, = h,(F, nJ, (3 = 0(F, n,), we obtained as a result 

a,+,‘*‘i3”:;2) ,J,,,‘~’ 30 
ar;!"aF,,+ 

a~ a~ ae ------- = 
‘J 

a0 aF,, aF,, aoaF,, 

= p -I ah -TKijnKj c p;*hKj aTKjj aT,ij ae 
K 2Fllb - + TaF,, JFob % 

If we now use the formulae which relate the stress tensor and the entropy with the free energy of the thermoelastic 
material 

(n$y(n)(F(n), 8) = ,p) &$“‘(F’“‘, 8) = 
Pr a&n) K ’ ae -q 

(n) 

bear in mind condition (2.5) of the continuity of the stress vector, and also the following expression from (2.7) 

we arrive at the required Eq. (3.3) 

Another equation, which is a new relation in the theory of phase transitions of a continuum and 
represents the differential dependence of the phase-transition temperature on the orientation of the 
interface for a fixed deformation of the initial phase, has the form 

It can be seen from Eq. (3.5) that the derivate Wan, is orthogonal to the normal nK, since 
h, + [TK] . nK = 0, by virtue of (2.5). 

Equations (3.3) and (3.5) hold for a thermoelastic material with an arbitrary type of anisotropy. 

Relation (3.5) is obtained by differentiating the second of the equations of system (3.1) with respect to the vector 
nK for a fixed value of the tensor F. Taking formulae (3.4) into account this gives 

TKjja, + [p,q]$ = 2TKijnKj + hKizr (2) F:’ aT 20 
%j + hKiTxia 

K* ka ra K1 
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The condition of continuity of the stress vector (2.5) and the equation 

~ FI: ) ~ hr, i 
~n~a - h ~ f )  aj + nr, a..., 

One: a 

which follows from (2.7), lead to the equation considered. 

Consider a thermoelastic material, both phases of which are initially an isotropic material, for which 
the kinematic phase-transition characteristic U0 is a spherical tensor. The constitutive relations can be 
written in the form 

Olll(n) ( lk(B(n)), O) 
~(n) = V(n)(lk(B(~)), 0), rl(~)(Ik(B(~)), 0) = 00 

(3.6) 
T(n)(B (n), 0) = p (n)oq/(n) • (FT) (n) = 13(0n)I + ~n)B(n) + ~(n)B(n) - B (n) 

Here [30, [11 and 132 are scalar functions of the temperature 0 and the three independent invariants Ik(B) 
of the tensor B = F • F T, unlike F, which does not contain a rotation of the material element as a rigid 
whole. 

For the medium considered, Eq. (3.3) reduces to a symmetrical tensor equation for the derivative 
30/OB, while relation (3.5) is transformed into an equation for the derivative O0/On. This assertion 
becomes obvious if, instead of system (3.1), we consider the condition of continuity of the stress vector 
(2.12) and relation (2.16) for the jump in energy in Euler variables x e Z(t) 

T(2)(B (2), 0)" n = T(B, 0 ) .  n 

W(Z)(B <2), 0) - v (B,  0) = p~Xh. T(B, 0 ) .  n + 8 .  

Hence it follows at once that the phase-transition temperature 0 = 0(B, n). 
To convert Eqs (3.3) and (3.5) to Euler variables, we will use relations which follow from formulae 

(2.7) and (2.14) 

F (2) = F + h ® j-1FT, n, h~: = (pc/(p~cO)h, n~ = (pKc~/(pc))j-1F T. n (3.7) 

Using these relations and the relation T~ = JT • F -1T between the Cauchy and Piola-Kirchhoff stress 
tensors, Eq. (3.5) can be written in the form 

{ ~T }30 F-i t ]  F r  J [ p ~ r l l + h . ~ - ~ . n  ~-~ = h . [ J T .  • 

Using formulae (2.12) and (2.14) we convert the right-hand side of this equation as follows: 

[JT.  F -It]  • F r = ( JT .  F-1T) (2). (FT) (2)- 
(3.8) 

- ( JT-  F-1T) (2) - (j-1FT • n) (2) ® h - J T .  F -IT. F r = [JT] - T .  n ® h 

which finally gives 

J [p nl + h .  n = [ J X ] .  h - ( h .  T .  n ) h  

If both phase are liquid, for which 

T = -p(V,O)I ,  V = JIp~ = lip 

the derivative O0/0n is identically equal to zero. 

(3.9) 

In fact, in this case, taking into account the continuity of the pressure at the interface, the right-hand side of 
Eq. (3.9) can be written in the formp(h • n - [V])h. This quantity is equal to zero, since it follows from relation 
(2.11) that 
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IV] = [p-l] : [c]/(pc) : - [ v ] . n / ( p c )  

Bearing in mind definition (2.14) of the vector h, we obtain 

h . n  = p~[V] = [J] (3.10) 

Hence the required assertion immediately follows. 

W h e n  both  phases are solid, there is an or ientat ion of  the interface which yields an ext remum of  the 
phase-transi t ion tempera ture  for a fixed state of  the initial phase. This ex t remum value occurs in the 
case when one of  the principal axes of  the f ini te-deformation tensor  B coincides with the normal  n to 
the interface. 

In fact, suppose 

B = B o n ® n + B a ~ e  a N e l 3 ,  ~,13 = 1,2 (3.11) 

where % are the unit vectors of the principal axes of the tensor B, which lie in a plane tangential to the interface. 
By virtue of the polynomial representation (3.10), the Cauchy stress tensor in the initially isotropic medium will 
have the same structure 

T = Ton @ n + Tal~% ® el~, o~, 13 = 1, 2 (3.12) 

It follows from the condition of continuity of the stress tensor (2.12) that 

~(2) 
T (2) = Ton @ n + l a13% ~ el3 

For a material with a one-to-one correspondence between the tensor T (2) and B (2) we  have 

(2 
~(2) = Bo)n ® n + t~a13% ~9 el3 

This indicates that 

[B] = [Boln @ n + [Bal3] % ® % (3.13) 

We will now turn to the first relation of (3.11), from which, for the deformed state considered, it follows that 

[B] = b ® h + h ® b + ( b - b ) h ® h ,  b = J - 1 B . n  = b n ,  b = J - 1 B  o 

Representing the vector h in the form of the sum normal and tangential components 

h = h n n + h a e  a,  h n = h . n ,  h a = h - % ,  ~ = 1,2 

and substituting into the previous relation, we obtain 

[B] = bhn(2 + bhn)n ® n + b(1 + bhn)ha(n ® e a + e a ® n) + b2hah~ea N % 

Comparing this formula with relation (3.13), we see that h = hn. Hence, taking relation (3.10) into account, it 
follows that [B~] = 0, i.e. all the components of the tensor B, with the exception of the normal component B0, 
are continuous on the interface. We emphasise that the continuity of the components Ba~ is satisfied for state (3.11), 
but in general this continuity does not occur. 

Substituting the vector h = hn into relation (3.9) we obtain that the derivative 00/0n equal to zero, which 
corresponds to an extremum of the phase-transition temperature for deformed state (3.11). 

I f  one of  the phases is a liquid, the deformation tensor may be reduced, by a unimodular  transformation 
of  the reference configuration, to the fo rm (3.11). This means  that, for a "solid-liquid" phase  transition, 
we can assume, wi thout  loss of  generality, that  h = hn, which leads to the condit ion 00/On = 0. Hence  
it immediately  follows that the phase-transi t ion tempera ture  is independent  of  the or ientat ion of  the 
interface, if one of  the phases at the elastic initially isotropic material  is liquid. This assertion to some 
extent justifies the applicability of  classical theory  to describe the melt ing (evaporat ion)  of  solids and 
shows that a considerat ion of  solid effects does not  change the cardinal picture o f  this process. 
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The  equat ion which determines  the dependence  of  the phase-transi t ion t empera tu re  on the finite- 
deformat ion  tensor  of  the initial phase, has the form 

2 [ p : l  + h. ~ .  n ~ .  B = (I + n ® : l h ) .  ([JT] - (h. T.  n)I) + ( 3 . 1 4 )  

+ { n ® h .  T - T .  n ® h} - 2 ( n  ® h )  : L .  B 

where  L -- ~T/OB is a four th-rank tensor  of  the elastic coefficients. 

To derive this equation we turn to Eq. (3.3). Using relations (3.6) and the relation T~ = JT • F -lr between the 
stress tensors, we obtain, after substitution into Eq. (3.3). 

bT ]~0] F- I t  I b(JT.  F -lr) 
[p~q] + h.  ~--~. n~-F  n~ = [JT.  - J - lh  ® F r .  n : OF (3.15) 

The derivative of the phase-transition temperature with respect to the tensor F for a fixed normal nK is 

D0(B,n(F, aO) = 20 bBij i)~nin bni = 2 2 0  F j o _ n ~ n  i Fi-~ r 
OFab n~ ~ i j  n OFab + ~ ~Baj n B 

Here we have used the formula OF~slT/OFab = -Fi~blTF~ 1T, which is obtained by differentiating the identity 
F~IF/k = g~k with respect to F~b. Substituting this relation into (3.15) we obtain the equation 

{[ n} ~(JT" F-'r) OT c~0 . F = ( I + n ® j - l h ) [ J T - F  -IT ] - ( h ® J - 1 F r  n): 
2 p~ 'q]+h.~-~.  ~ n  " 0F 

Expanding the derivative in the last term, taking into account the formulae 

OJ = jF-1T, OFi-s IT = --1T~IT OTik = ~Tik 
O"-F bFab --fib r as , bFab 2~-~amFmb 

and multiplying the equation scalarly on the right by F T, we obtain 

I  Tl°° 2 [ P ~ n l + h . ~ . n  ~-g-B = 

= ( l + n N J - l h )  . [ J T . F  - l r ] . F r - ( h . T . n ) I + n ® J - l h . T + 2 ( h N n ) : L . B  

Using formula (3.8) and reducing like terms, we obtain the required Eq, (3.14). 

For  the deformed  state (3.11), for  which there  are no shear strains (shear stresses) at the interface, 
Eq. (3.14) can be reduced  to two simpler relations 

, .  ,OTo'~ 20 OTo 
IT1 ] + l V l - ~ - ) ~  = - [  V] OR ° (3.16) 

[1]] ,. ,bTo)  O0 -I : : 
+ l v ! - ~ - ) ~ - - ~  = 2 [ V(Tc~ v - T0~c~v)]B,yl~ - [V] ~HBoBco (3.17) 

Formula  (3.16) was obta ined previously in [8] for  the case when one  of the phases is a liquid. 

To derive relations (3.16) and (3.17) we note that, by virtue of formulae (3.12) and (3.13), 

[ J T ]  = [J ]Ton®n+[JTc t~ ]ec~®e[~ ,  ec~ .n  = 0 ,  ot,[~ = 1 , 2  

Taking into account the fact that, for the deformation considered h = [J]n, we obtain h • T- n = [J]T0. Hence it 
follows that the first term on the right-hand side of (3.14) is equal to 
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[J(Tal~-8o:~To)]%®ei~, ct, 13 = 1,2 

while the second term, by virtue of formula (3.11) and the colinearity of the vectors h and n, vanishes. The last 
term is equal to 

where 

A B 
-2[J]{(131 + 213~B o + ~AsBA+B)n ® n + ~ABBoBaf~% ® el3 } - B, A, B = 0, 1, 2 

( 0  1 0 ~/3) (c3 1 0"~.  OI~A 
13A0 = [~'11 "b 1~2"+12 13A, 13A1------[~'22 "1- 1~33)~A' ~A2 = ~i  3 

These expressions can be obtained by differentiating the polynomial representation (3.6) of the Cauchy stress 
tensor, taking into account the definition of the principal invariants I~(B) and the Hamilton-Cayley theorem 

0T B A ® ~ A  ~ 0B 
0--fi = 3- i f+  1 ~ + ~ 2  = 

= ~ABB A ® B B + 1311 + 132(I ® B (1342) + I ® B (1432) + I ® B (2413) + I @ B (2314)) 

1 
where 1 = -~(~ia~jb + 6ib6ia)e i @ e j @ e ~ @ e b is a fourth-rank unit tensor, while I @ B (1342) = 6iaBbje i @ e j @ 

e a @ e b is the isomer of the tensor I @ B. Since the quantity (131 + 2132B 0 + 13AsB0 A + e) is equal to OTo/OBo, relations 
(3.16) and (3.17) are proved. 

4. A L I N E R  I N I T I A L L Y  I S O T R O P I C  T H E R M O E L A S T I C  M A T E R I A L  

We will consider, as an illustration, a phase transition of the first kind in a linear initially isotropic 
thermoelastic solid, which is of independent interest. We will use as the initial configuration ~: of each 
of the phases a configuration with the same temperature 00 and the same density 9K. The initial state 
of the first phase will be assumed to be natural (unstressed), and the second phase in configuration ~: 
is characterized by an initial stress T = -p0I. The deformations of each of the phases, measured from 
the configuration ~, are assumed to be small. The singular source of entropy is assumed to be constant. 
The free energy density of each of the phases is taken in the form 

(n)__ (n).(n) 
flog (m = 9K~g~')-p~q~ v - p ~  t 1 + 

1 (n) (n) 2 e)(n) (n).(n)-- 1 (n)~2 
+~)~ ( I 1 )  +p(n)( e :  - a  11 V - ~ 0 C  "O" 

(4.1) 

when n = 1, 2 is the number of the phase, e is the small deformation tensor, I1 = I : e, 0 = 0 - 00, 
f n (n) (n~ (n) (n) (n) (n) (") r th 0/00 ~ 1, and the coe ficie ts ~t~ ,p~ , ~1~ , c , ~ , ~ , p a e functions of e temperature 00. The 

entropy density and the stress tensor in each material are written as follows: 

p~q (") = p~q~ ) + o~(~)I(1") + c(")O/Oo 

T(n) ~,~(n),(n) (n) _ (n) . . . .  + 2gt(n)e(n) 
(4.2) 

Hence it can be seen that ~(n), g(n) are Lam6 coefficients, ~(n) is the coefficient of thermal expansion, 
c (~) is the heat capacity, while the quantities ~g~), q~) characterize the free energy and entropy of the 
phases in the initial states. We will assume that 

As already pointed out, p(1) = 0, p~) = P0. It follows from relations (4.2) that the approximation of 
small deformations, measured from the configuration ~c, holds if the initial pressurep0 is small compared 
with the moduli of elasticity. 

The assumption that the deformations of each of the phases are small, implies smallness of the jump, 
which experiences a rotation of a material particle on the phase boundary. 
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In fact, suppose the tensor F has the form 

F = R - U  = R . ( I + % )  

where % is the small-deformation tensor, which is of the order of 8, where 8 < 1 is a small parameter, while R is 
the orthogonal tensor of finite rotation. Then, apart from terms O(82), the quantity 

F . F  r = R . ( I + 2 % ) . R  r = 2 e + I  

where e = R • % • R r is the deformation tensor, which, like % is of the order of 8. Using the formula lab] = 
a[b] + [a]b + [a][b] and relation (2.14), we obtain 

2[el = [ F ] . F  r + F . [ F  r ] + [ F ] . [ F  r] = 

= J - lh  ® n .  F -  F r + J -1F.  F r .  n + J-2(h ® h )n .  F .  F r .  n 

Taking into account the fact that J = detF = 1 + Ii(e) + 0(82) and F .  F ~ = 2e - I, the relation obtained can be 
reduced to the form 

2[e ]  = { 2 h ® e . n + 2 e . n ® h + 2 ( n . e . n ) h N h } +  

+Ii(hNn+nNh+2hNh)-(h®n+nNh+h®h)+O(8 2) 

Since the left-hand side and the first two terms on the right-hand side are of the order of 8, the third term on the 
right-hand side must have the same order, i.e. 

h ® n + n ® h + h ® h  = 0 ( 8 )  

Hence we have the relations 

h + ( h . n ) n + ( h . n ) h  = O(8) ,  2 ( h . n ) + ( h . n )  2 = 0 ( 8 )  

The second equation has the solutions (h .  n) = 0(8)  and (h" n = -2  + 0(8). Substituting (h" n = 0(8)  into 
the first equation we obtain h = O(8), which corresponds to a small jump in the rotation of a material element on 
the phase boundary. The solution (h • n) = -2  + 0(8)  describes a finite jump of rotation. However, this solution 

1 T 1 is inapplicable since, from the formula [J- F ] • n = 0, which is obtained from the Piola identity V • (J- F) = 0, 
taking into account the relation J = 1 + O(8), it follows that [F r] • n = 0(8). Hence we obtain (h - n)F r"  n = 
0(8). The vector F r .  n is not identically equal to zero, since in the opposite case we would have a non-trivial solution 
of a uniform non-degenerate linear system F T. n = 0, detF ¢ 0. This denotes that (h .  n) = 0(8). 

No te  that  the  resul t  ob ta ined  holds for a mate r ia l  with an arbi t rary  type of  symmetry.  I t  can be  app l ied  
to the  process  of  recrysta l l izat ion,  which is a special  case  of  a phase  t rans i t ion  of  an i so t rop ic  solids, 
when  the  init ial  and  p roduc t  phases  a re  one  and the  same mater ia l .  The  e l emen t s  of  the  ma te r i a l  on  
pass ing th rough  the  in ter face  unde rgo  d e f o r m a t i o n  and  ro ta t ion ,  l ead ing  to a change  in the  spat ia l  
o r i en ta t ion  of  the  an i so t ropy  axes. Since the  smal lness  of  the  de fo rma t ions  impl ies  smal lness  of  the  
rotat ions,  we can assert  that  recrystall ization is a part icular ly non- l inear  phenomenon ,  which is necessari ly 
a c c o m p a n i e d  by a finite de fo rmat ion .  

Taking the  above  re la t ions  into account ,  we can wr i te  the  j u m p  in the  stress t ensor  in the  fo rm 

[T] = {L(2)(h • n)  + A o 0 } I  + g(Z)(h ® n + n ® h)  + 2 g , A e  

~L, = [)~]/A, g ,  = [ g ] / A ,  p ,  = Po/A ,  or, = [cz]/A (4.3) 

A = ~(2)+2g(2) ,  o 0 = ;Z,I  1 - p , - ~ , O  

The  re la t ion  be tween  the  vec tors  n, h and  e • n 

g ( 2 ) h  + { ( ~ ( 2 )  + ~L(2))(h . n)  + A 6 0 } n  + 2 g , A e  • n = 0 

fol lows f rom fo rmula  (4.3) and  the  cond i t ion  IT] • n = 0. H e n c e  

h = - ( 6 0 + 2 g , n -  e .  n ) n - 2 g , / m  

l = A/~t (2), m = { I - n ®  n } .  e . n ,  m - n  = 0 

(4.4) 

(4.5) 



Clausius-Clapeyron equations for phase transitions in a thermoelastic material 77 

where m is the component of the vector e" n tangential to the interface. It follows from relations (4.5) 
that 

2 2 h- h = (6 0 + 2 g , n .  e .  n) 2 + 4 g , l  m .  m = (6 0 + 2 g , n .  e .  n) 2 + 4tt212((e • n) × n) 2 

m . m  = ( e .  n ) -  { I - n  ® n }  z .  ( e .  n)  = ( n .  e 2 . n ) - ( n .  e - n )  2 = ( ( e .  n)  × n )  2 
(4.6) 

We will now turn to relation (2.16), which can be written in the form 

[p~:~] = h • T (2). n + p•8, (4.7) 

Taking into account the relations 

[I~] = 21~2)h • n- (h. n) 2, [e : e] = 2(h. e. n) + I/2((h - h) + (h. n) 2) 

pol] 2) = poll + Po(h.  n), 1/2[~,I 2] = ~,f2)l]2)(h • n ) -  1/2~,(2)(h • n) 2 + 1/2[~]I 2 

[$.te : e] = 2g(2)(h • e. n) + I/2g(2)(h • h) + I/2g(2)(h • n) 2 + [g]e : e 

[12.1110 = O~(2)O(h • n) + [~] l lO 

and formulae (4.3), (4.5) and (4.6), Eq. (4.7) can be reduced to the form 

1 ; - 1 -2  ~ ( h .  n)  2 + IF, - rl,70 - p , I  1 + ~)~,I 1 + I.t,e " e - 0~,I101 - .~c,O = 2gZ, l(m • m) 

"d'- O/0o, ~ ,  = P~(~o-  8 , ) /A ,  r l , -  p~rlo0o/A, c ,  = [C]0o/A 

(4.8) 

From Eq. (4.8), taking expression (4.5) for the vector h into account, it follows that when the dimension- 
less jump in entropy q ,  -- O(1), the phase-transition temperature 

= ~ , / q ,  + 0052) (4.9) 

i.e. only the energy characteristics of the phase transition gt, and q ,  and of the dissipation 8,,  which 
accompany the change in the structure of the material, are determined. It makes no sense to take into 

2 account terms 0 ( 8  ) in the approximation considered since Eqs (4.2) are written up to terms of first 
order infinitesimals. 

When q* = 0(8) ,  the phase-transition temperature depends very much on the strain tensor of the 
initial phase and the orientation of the normal to the interface with respect to the principal axes of the 
tensor e. Before we investigate this relation, we note that the difference in the thermoelastic coefficients 
of the phases of the material, generally speaking, may be quite high [29]. Hence, we will consider the 
case when 

~ ,  = O(1), I t ,  = O(1), ~ ,  = O(1), c ,  = O(1), p ,  = 0(8)  

The equation of the derivative of the phase-transition temperature with respect to the vector of the 
normal in this approximation is written in the form 

MAOO/On = [ T ] . h ,  M - r l ,  +O~,ll + C , O + o ~ , ( h . n  ) 

Bearing expressions (4.3) and (4.5) in mind and taking into account the continuity of the stress vector, 
the relation obtained can be converted to the form 

2 
MOO~On = - 4 g , ( o  o + 2/.t,eo)m -4 1 a , l ( e .  m - eom - (m.  m)n)  (4,10) 
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The normal, which coincides with the principal axis of the small-deformation tensor of the initial 
phase 

e = e o n  ® n + eal~e a ® el3 (4.11) 

yields an extremum of the p_hase-transition temperature, since in such a deformation the vector 
m = 0 and, consequently, DO/0n = 0. The form of the extremum is determined by the matrix 
020/0n ® On = 0 for deformation (4.11). 

Taking expressions (4.3) and (4.5) into account, the equation for the derivative of the phase-transition 
temperature with respect to the deformation tensor can be written in the form 

MAOO/be = [T] - h- (OT/Oe) • n (4.12) 

It follows from Eq. (4.12) that for bulk deformation of the initial phase, the type of the phase transition 
in a linear thermoelastic solid with the rheological Characteristic 1"1, = 0(8)  inevitably changes, i.e. the 
normal (anomalous) phase transition changes into an anomalous (normal) transition. 

In fact, for a fixed normal and a constant intensity of the shear strain 12 = (e' : e ' )  1/2 = const, where e' = 
e - 1/3111 is the deviator of the strain tensor, the derivative of the phase-transition temperature with respect to the 
first invariant is equal to 

MOO/~I l = ( 1 - K , ) ( K , 1 1 - P , - O t , 7 0 ) - 2 g , K , n . e ' . n ,  K,  = )~ ,+2g, /3  (4.13) 

The right-hand side of relation (4.13) vanishes if the normal to the phase boundary of the component of the strain 
tensor is related to the other two diagonal components by the relation 

2 g , K , ( 2  1 ) 
K ,  ( e l l  + e22 + e33 ) - p ,  - ~ ,~(e ,  n) = 1 - K ,  ~3 e l l  -- 3 (e22 + e33) 

The strain tensor yields an extremum with respect to 11 of the phase-transition temperature. With a ,  = 0(8), this 
relation, apart from second-order infinitesimals, can be written in the explicit form 

p ,  1 - K ,  1 -)~, (4.14) 
ell = ~--~, l_A,- l_A,(e22+e33) ,  A,  = )~ ,+2g ,  

In the case of spherical tension (compression), when the deviator e' is equal to zero, this relation becomes 
particularly simple and has the form 

ell = e22 = e33 = p,/(3K,) 

In the general case, the deformations, which yield an extremum to the phase-transition temperature, are defined 
by the solution of the system which consists of Eq. (4.14) and the condition e':e' = const of constant intensity of 
shear deformation. 

As in the case of an ideal liquid, we will say that a phase transition is normal if an increase in the 
bulk deformation leads to a reduction in the phase-transition temperature (00/211 < 0). Otherwise, 
the phase transition is anomalous, and the reduction in the temperature of the phase transition 
(O0/OI1 > 0) in this material occurs for compression deformation. The existence of this extremum 
indicates that, for sufficiently large changes in the bulk deformation of the initial phase the type of the 
transition in the material considered necessarily changes, and a transition occurs from a normal phase 
change to an anomalous one (or vice versa). This occurs provided the phase transition is accompanied 
by a change in the moduli of elasticity, compared with the value of the moduli themselves, while the 
jump in entropy is small in the sense indicated above. The existence of this effect is due purely to the 
solid-state properties of the material - the presence of a stress deviator and its effect on the energy of 
the equilibrium state of the medium. 

I wish to thank V. N. Kukudzhanov and V. Ye. Fortov for discussion the results of this research. 
This research was supported by the Russian Foundation for Basic Research (03-03-64643) and the 

Ministry of Education of the Russian Federation, and the "Universities of Russia" Programme 
(UR04.01.27). 



Clausius-Clapeyron equations for phase transitions in a thermoelastic material 79 

R E F E R E N C E S  

1. LANDAU, L. and LIFSHITZ, E., Statistical Physics. Pergamon Press, Oxford, 1969. 
2. ERICKSEN, J. L., Equilibrium of bars. J.. Elasticity, 1975, 5, 191-201. 
3. TRUESDELL, C., A first Course in Rational Continuum Mechanics. J. Hopkins Univ., Baltimorer, 1972. 
4. LEVITAS, V. I ,  Structure changes without stable intermediate state in inelastic material. E I. General thermomechanical 

and kinetic approaches. Int. J. Plasticity, 2000, 16, 805-849. 
5. GIBBS, J. W., Collected Works. V. 1, Thermodynamics. Longman, Green, New York, 1928. 
6. LIKHACHEV, V. A., KUZ'MIN, S. L. and KAMENTSEVA, Z. P., The Shape Memory Effect. Izd. LGU, Leningrad, 1987. 
7. BOWEN, R. M., Toward a thermodynamics and mechanics of mixtures. Arch. Rat. Mech. Anal., 1967, 24, 370-403. 
8. GRINFEED, M. A., Methods of Continuum Mechanics in the Theory of Phase Transitions. Nauka, Moscow, 1990. 
9. TRUSKINOVSKII, L. M., The chemical potential tensor. Geokhimiya, 1983, 12, 1780-1744. 

10. KONDAUROV, V. I. and NIKITIN, L. V., Investigation of phase transitions of the first kind in non-linearly elastic media. 
Izv. Akad. Nauk SSSR, MTT, 1983, 6, 49-55. 

11. ARUTYUNYAN, N. Kh. and DROZDOV, A. D., The accretion of ageing viscoelastic bodies under phase transition 
conditions. [zv. Akad. Nauk SSSR. MTT, 1985, 6, 136-144. 

12. METLOV, V. V. and TURUSOV, R. A., The formation of a stressed state of viscoelastic bodies growing under frontal hardening 
conditions, lzv. Akad. Nauk SSSR, MTT, 1985, 6, 145-160. 

13. KONDAUROV, V. I., and NIKITIN, L. V., Phase transitions of the first kind in an elastoviscolastic medium. Izv. Akad. Nauk 
SSSR. MTT, 1986, 4, 130-139. 

14. MOROZOV, N. E, NAZYROV, I. R. and FREIDIN, A. B., The one-dimensional problem of the phase transition of an 
elastic sphere. Dokl. Ross. Akad. Nauk, 1996, 346, 2 188-191. 

15. KULIKOVSKII, A. G. and SVESHNIKOVA, Ye. I., Non-linear Waves in Elastic Media. Mosk. Litsei, Moscow, 1998. 
16. KNOWLES, J. K., Stress-induced phase transitions in elastic solids. Comput. Mech., 1999, 62, 429-436. 
17. GURTIN, M. E., The dynamics of solid phase transitions 1. Coherent interfaces. Arch. Rat. Mech. AnaL, 1993, 129, 305-335. 
18. NGAN, S.-C. and TRUSKINOVSKY, L., Thermal trapping and kinetics of martensitic phase boundaries. J. Mech. Phys. Solids, 

1999, 47, 141-172. 
19. KNYAZEVA, A. G., Generalizations of the Clausius-Clapeyron equation in a coupled thermomechanical model. Zh. Prikl. 

Mekh. Tekh. Fiz., 1999, 40, 6, 103-111. 
20. ESHELBY, J. D., The continuum theory of Lattice Defects. In Solid State Physics:Advances in Research and Applications, 

Vol. 3, (edited by E Seitz and D. Turnbull). Academic Press, New York, 1956, 79-144. 
21. KONDAUROV, V. I. and NIKITIN, L. V., Theoretical Principles of the Rheology of Geomaterials. Nauka, Moscow, 1990. 
22. SEDVO, L. I., Continuum Mechanics, Vol. 2. Nauka, Moscow, 1970. 
23. LEE, E. H., Elastic-plastic deformation at finite strain. Trans. ASME. J. Appl. Mech., 1969, 36, 1-6. 
24. CRISTIAN, J. W., The Theory of Transformation in Metals andAlloys Pergamon Press, Oxford, 1975. 
25. ROITBURD, A. L., Theory of the formation of a heterophase structure for phase transitions in the solid state. Usp. Fiz. 

Nauk, 1974, 113, 1, 69-104. 
26. ROBIN, E Y. E, Thermodynamic equilibrium across a coherent interface in a stressed crystal. Am. Mineralogist, 1974, 59, 

1286-1298. 
27. COE, R. S., The thermodynamic effect of shear stress on the orthoclino inversion in enstatite and other coherent phase 

transition characterized by finite simple shear. Contribs. Mineral and Petrol, 1970, 26, 247-262. 
28. KONDAUROV, V. I., The laws of conservation and symmetrization of the equations of non-linear thermoelasticity. Dokl. 

Akad. Nauk SSSR, 1981, 256, 4, 819-823. 
29. GRIGOR'YEV, I. S. and MEILIKHOV, Ye. Z. (Eds), Physical Quantities. A Handbook Energoatomizdat, Mosco, 1991. 

Translated by R.C.G. 


